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Abstract

Thermal (Bénard) instability in nanofluids is investigated in this work. Emphasizing the combined behaviors of Brownian motion and
thermophoresis of nanoparticles, the critical Rayleigh number is shown to be lower by one to two orders of magnitude than that for
regular fluids. The highly promoted turbulence increases the energy bearing capacity of nanofluids, which could result in higher overall
heat transfer coefficient than the increase of the effective thermal conductivity alone. The dominating groups are extracted from the non-
dimensional analysis. Close form solutions for the Rayleigh number are derived from the method of eigenfunction expansions and the
weighted residual method.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Nanofluids are mixtures of a regular fluid, such as water
or ethylene-glycol, with a very small amount of suspended
metallic or metallic oxide nanoparticles (Cu,CuO,Al2O3)
or nanotubes [1–5]. Typical dimension of the nanoparticles
is in the range of a few to about 100 nm. In presence of a
mere few percents of nanoparticles, a significant increase
of the effective thermal conductivity of nanofluids has been
reported. Examples include 40% increase of the effective
thermal conductivity in ethylene-glycol nanofluid with 10-
nm copper nanoparticles of 0.3% in volume fraction
(0.3 vol%) [1] and 10–30% increase of the effective thermal
conductivity in alumina/water nanofluids with 1–4 vol% of
alumina [5]. Single-phase convective heat transfer coeffi-
cient, in parallel, has been extended to estimate the
enhancement of the energy bearing capacity of nanofluids.
Even with the higher viscosity and effective thermal con-
ductivity accommodated, the Nusselt number for turbulent
flow in round tubes can still be over 30% higher than pre-
dicted [6–10].
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Property changes/enhancements by nanoparticles/nano-
tubes at extremely low volume fractions are much higher
than those expected from the macroscopic models. The
governing mechanisms in support of such drastic enhance-
ment in presence of low volume fractions of nanoparticles,
as expected, have attracted a lot of attention over the past
decade. The surface-area-to-volume ratio inversely propor-
tional to the diameter of the particle is believed to be
responsible for the large deviations from the macroscopic
model when predicting the effective thermal conductivity
[1]. Since most macroscopic model does not include the
particle size, the deviation would increase as the particle
size becomes smaller. Various attempts have thus been
made to determine the governing mechanisms in nanoscale,
including a modified Maxwell model accounting for the
ordered nanolayer near the particle–fluid interface [11],
Brownian motion of nanoparticles in fluids [12,13], ballistic
nature of heat transport within nanoparticles [14,15], ther-
mophoretic diffusion of nanoparticles in fluids [10], and
thermal lagging in nanoparticles with a large surface-
area-to-volume ratio [16]. It seems that combinations of
some of above, such as Brownian motion combined with
fluid mediated clustering/ballistic phonon transport or
thermal lagging combined with large surface-area-to-vol-
ume ratios in nanoparticles, contribute much more than
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Nomenclature

a size parameter of Bénard cell
A, B coefficient
B determinant
c specific heat (J/kg K)
c1,2 coefficient
d diameter of nanoparticles
D distance (m)
DB,T diffusion coefficient (m2/s)
f in-plane distribution of Bènard cell
F amplitude of volume fraction
g gravitation (m/s2)
h enthalpy (J/kg)
H parameter
j mass flux (kg/m2 s)
k thermal conductivity (W/m K)
kB Boltzmann constant (J/K)
Le Lewis number
N ratio
p pressure (Pa)
P pressure
Pr Prandtl number
RN NTT/NBT

Ra Rayleigh number
t time (s)
T temperature (K)
ui velocity (m/s), i = 1,2,3
Ui velocity, i = 1,2,3
xi space (m), i = 1,2,3
Xi coordinate, i = 1,2,3

Greek symbols

a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
d Kronecker delta
/ volume fraction of nanoparticles
U volume fraction
h temperature
H temperature amplitude
l viscosity (N s/m2)
q mass density (kg/m3)
r amplification rate of disturbance
s time

Subscripts and superscripts

0 reference state, bottom plate
1 top plate
b bulk
c critical value
B Brownian motion
BT Brownian-to-thermal-diffusivity
f base fluid
i imaginary
p nanoparticle
r real
T thermophoresis
TT thermophoresis-to-thermal-diffusivity
�z primary flow of z

z0 disturbance of z or dz/dX3
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any effect alone in explaining the anomalous enhancement
of the effective thermal conductivity.

Heat transfer enhancement by nanofluid properties
(such as the volume-fraction dependent thermal conductiv-
ity) has been studied for turbulent force convection [10]
and laminar free convection of Newtonian nanofluids
[17]. The critical Rayleigh number at the onset of thermal
instability that separates the laminar and turbulent
regimes, however, has not been made clear, making it dif-
ficult in choosing the appropriate correlations in different
regimes. The heat transfer coefficient (Nusselt number) of
nanofluids remains to be higher in turbulence than that
in laminar flow. Promotion of turbulence, in terms of a
lower critical Rayleigh number, thus implies an increase
of the heat transfer coefficient in the turbulent regime,
which may be an equally important source for the overall
enhancement of heat transfer. Natural convection plays
an important role in the enhancement of the effective ther-
mal conductivity, since the nanoparticles will continuously
move in the base fluid due to thermophoresis (movement of
nanoparticles from the high temperature site to the low
temperature site) and Brownian motion (movement of
nanoparticles from the high concentration site to the low
concentration site) [10,18]. Even though the nanofluid
may appear quiescent over the test section, the internal
motion of nanoparticles unavoidably introduces convec-
tion into the heat transfer mode. Should natural convection
be found more effective in nanofluids, alternatively, the
effective thermal conductivity would also be higher since
the later is closely related to the overall heat transfer coef-
ficient. While heat transfer correlation for turbulent flow of
nanofluids in a round tube has been established [10] and
enhancement of thermal conductivity for free convection
of nanofluids in a rectangular cavity has been accommo-
dated [19], this work studies the critical Rayleigh number
for the onset of Bénard instability in nanofluids. The vol-
ume-fraction dependence of nanofluid properties, however,
will be temporarily left out and all thermophysical proper-
ties of the nanofluids will consequently be assumed con-
stant, due to the recent arguments on the nanoparticle
mean free path [20] and the use of new optical beam deflec-
tion technique [21] in measuring nanofluid thermal conduc-
tivity. In absence of such dependence on the volume
fraction, therefore, the emphasis in this work is placed on
the significant reduction of the critical Rayleigh number,
and hence dominance of turbulence, as a result of the
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combined behaviors of Brownian motion and thermopho-
resis of nanoparticles in stationary fluids. Bènard instabil-
ity for regular fluids is reformulated to accommodate
such effects. It is shown that in presence of a mere 1 vol%
of nanoparticles, the critical Rayleigh number, which gov-
erns the transition from laminar to turbulent regime, is
reduced by one to two orders of magnitude. For the nano-
fluid bounded by a rigid and a free surfaces, the resulting
critical Rayleigh number is of the order of several tens
(101), as compared to 1100.65 (103) for regular fluids, which
justifies the dominance of turbulence for natural convec-
tion in nanofluids. Since the heat transfer rate in turbulence
can be higher than that in laminar flow by one order of
magnitude, the overall heat transfer coefficient can be sig-
nificantly higher than that in the regular fluid remaining
laminar. To demonstrate such unusual enhancement of tur-
bulence in nanofluids, a nondimensional analysis is per-
formed to extract the dominating parameters and close
form solutions are obtained to avoid all numerical uncer-
tainties. Their effects are illustrated along with the charac-
teristic dimension of the Bènard cells at the onset of
thermal instability.

2. Formulation

While viscosity, density, thermal conductivity, and spe-
cific heat of nanofluids strongly depend on the volume frac-
tion of nanoparticles, for the purpose of characterization
and estimates of the various effects on the order of magni-
tude, all thermophysical properties of nanofluid shall be
assumed constant in the analytical formulation. The nano-
fluid is assumed incompressible, with gravity aligned with
the x3-direction. The continuity and momentum equations
are

ouj

oxj
¼ 0; q

oui

ot
þ uj

oui

oxj

� �
¼ � op

oxi
þ lui;jj � qgdi3;

i; j ¼ 1; 2; 3; ð1Þ

where a repeated index (j) refers to summation, uj(o/
oxj) � u1(o/ox1)+u2(o/ox2)+u3(o/ox3) and ui,jj � ui,11 +
ui,22 + ui,33 = $2ui. The nanofluid density (q) in Eq. (1) is

q ¼ /qp þ ð1� /Þqf ; or
q
qf

¼ /
qp

qf

� �
þ 1� /ð Þ: ð2Þ

The density of the nanofluid can be approximated by that
of the base fluid, i.e., q ffi qf, since the volumetric fraction
of nanoparticles is only a few percent [1]. For alumina
nanoparticles in water, for example, (qp/qf) ffi 4 and a value
of / = 2% results in (q/qf) ffi 1.06. With the nanofluid den-
sity used in Eq. (1), therefore, the Boussinesq approxima-
tion is extended to the base fluid (qf) in accounting for
the density change due to the temperature change. The spe-
cific weight (qg) in Eq. (1) thus becomes

qg ¼ /qp þ ð1� /Þqf

� �
g

ffi /qp þ ð1� /Þ q 1� b T � T 0ð Þð Þf g
� �

g: ð3Þ
Relative to the flow velocities, nanoparticles also display
Brownian motion and thermophoresis due to their size
on the nanoscale. Brownian motion is proportional to the
volumetric fraction of nanoparticles, in the direction from
high to low concentration, whereas the thermophoresis is
proportional to the temperature gradient, from hot to cold.
Mass flux of the nanoparticles in base fluid (jp), therefore,
is superposition of the two [10],

jp ¼ �qpDBr/� qp

DT

T b

� �
rT ; ð4Þ

where DB represents the Brownian diffusion coefficient, gi-
ven by the Einstein–Stokes’s equation, and DT represents
the thermophoretic diffusion coefficient of the
nanoparticles:

DB ¼
kBT

3pldp

; DT ¼
l
q

� �
0:26k

2k þ kp

� �
/: ð5Þ

Note that the expression DT shown in Eq. (5) was estab-
lished for particles greater than 1 lm in diameter. In ab-
sence of thermophoretic data, however, it has also been
extended to particles of mean diameters in 1–100 nm. Vec-
tor notations are recovered in Eq. (4) to avoid coexistence
of p (for nanoparticles) and j (Cartesian coordinates) in the
indicial notations. In the linear theory, temperature change
in the nanofluid is small comparing to the bulk temperature
(Tb). Therefore, nanofluid temperature T in the denomina-
tor of Eq. (4) has been replaced by Tb. Assuming constant
coefficients in Eq. (4), the continuity equation for the nano-
particles is

o/
ot
þ uj

o/
oxj
¼ � 1

qp

r � jp ¼ DB/;jj þ
DT

T b

� �
T ;jj: ð6Þ

Drifting of nanoparticles in fluids represented by jp, now
including both Brownian motion and thermophoretic diffu-
sion relative to the flow velocities, introduces additional
flow work in the energy equation

qc
oT
ot
þ uj

oT
oxj

� �
¼ �r � qþ hpr � jp

where q ¼ �krT þ hpjp: ð7Þ

Substituting the expression for q and restoring jp as shown
in Eq. (4), the energy equation becomes

qc
oT
ot
þ uj

oT
oxj

� �

¼ kT ;jj þ qpcp DB

o/
oxj

� �
oT
oxj

� �
þ DT

T b

� �
oT
oxj

����
����
2

" #
: ð8Þ

Clearly, Brownian motion and thermophoresis of nanopar-
ticles introduce additional nonlinear effects for heat trans-
port in nanofluids.

Eqs. (1), (6), and (8) provide six equations for six
unknowns: three velocity components (ui), pressure (p),
volumetric fraction of nanoparticles (/), and temperature
(T). Introducing the following nondimensional parameters
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X i ¼
xi

D
; s ¼ t

D2=a
	 
 ; P ¼ p

qa2=D2
	 
 ; U ¼ /� /1

/0 � /1

;

h ¼ T � T 1

T 0 � T 1

; Ui ¼
ui

a=Dð Þ ; ð9Þ

the unabridged forms of Eqs. (1), (6), and (8) become

oU 1

oX 1

þoU 2

oX 2

þoU 3

oX 3

¼ 0; ð10Þ

oU 1

os
þU 1

oU 1

oX 1

þU 2

oU 1

oX 2

þU 3

oU 1

oX 3

¼� oP
oX 1

þPrr2U 1; ð11Þ

oU 2

os
þU 1

oU 2

oX 1

þU 2

oU 2

oX 2

þU 3

oU 2

oX 3

¼� oP
oX 2

þPrr2U 2; ð12Þ

oU 3

os
þU 1

oU 3

oX 1

þU 2

oU 3

oX 2

þU 3

oU 3

oX 3

¼� oP
oX 3

þPrr2U 1�H �1þb T 1�T 0ð Þ½ � /1�1ð ÞþRq/1

� �
�RaPr /1�1ð Þh�H Rq�1þb T 1�T 0ð Þ

� �
/0�/1ð ÞU

�RaPr /0�/1ð ÞhU; with H ¼ RaPr
bðT 0�T 1Þ

; ð13Þ

oU
os
þU 1

oU
oX 1

þU 2

oU
oX 2

þU 3

oU
oX 3

¼NBTr2UþNTTr2h;

ð14Þ
oh
os
þU 1

oh
oX 1

þU 2

oh
oX 2

þU 3

oh
oX 3

¼r2hþ 1

Le
oU
oX 1

� �
oh
oX 1

� �
þ oU

oX 2

� �
oh
oX 2

� ��

þ oU
oX 3

� �
oh
oX 3

� ��

þRN

Le
oh
oX 1

� �2

þ oh
oX 2

� �2

þ oh
oX 3

� �2
" #

: ð15Þ

The nanofluid is thus characterized by seven parameters:

Ra ¼ gD3bðT 0 � T 1Þ
a2

ðRayleigh numberÞ;

Pr ¼ m
a
ðPrantdl numberÞ;

Le ¼ k
qpcpDB /0 � /1ð Þ ðLewis numberÞ;

NBT ¼
DB

a
; Rq ¼

qp

q
;

NTT ¼
DT

a
T 0 � T 1

/0 � /1

� �
;

and RN ¼
NTT

NBT

: ð16Þ
2.1. Primary flow

Parallel to the Bénard instability for regular fluids [22],
Eqs. (10)–(15) will be studied for a quiescent nanofluid
between two parallel plates between x3 = 0 and x3 = D,
where temperature and volumetric fraction of nanoparti-
cles are kept constant: T = T0 and / = /0 at x3 = 0 and
T = T1 and / = /1 at x3 = D. In terms of the nondimen-
sional variables defined in Eq. (9), they are h = 1 and
U = 1 at X3 = 0 and h = 0 and U = 0 at X3 = 1.

The primary flow is assumed to be stationary, �U i ¼ 0 for
i = 1, 2, 3, with both temperature (�h) and nanoparticle vol-
umetric fraction (�U) varying in the X3-direction only. From
Eqs. (13)–(15), the equations governing the primary flow
are thus

d2 �U

dX 2
3

þ RN

d2�h

dX 2
3

¼ 0;

d2�h

dX 2
3

þ 1

Le
d�U
dX 3

� �
d�h

dX 3

� �
þ RN

Le
d�h

dX 3

� �2

¼ 0;

� d�P
dX 3

¼ H �1þ bðT 1 � T 0Þ½ � /1 � 1ð Þ þ Rq/1

� �
þ RaPr /1 � 1ð Þ�hþ H Rq � 1þ bðT 1 � T 0Þ

� �
� ð/0 � /1Þ�Uþ RaPrð/0 � /1Þ�h�U:

ð17Þ

The boundary conditions for �hðX 3Þ and �UðX 3Þ are

�hð0Þ ¼ 1; �Uð0Þ ¼ 1 and �hð1Þ ¼ 0; �Uð1Þ ¼ 0: ð18Þ

The equations governing �h and �U in Eq. (17) are nonlinear-
ly coupled, with the relation

�U ¼ �RN
�hþ c1X 3 þ c2 ð19Þ

followed from the first expression in Eq. (17). Substituting
Eq. (19) into the second equation in Eq. (17), it results in

d2�h

dX 2
3

þ c1

Le
d�h

dX 3

� �
¼ 0; ð20Þ

which can easily be integrated for �h. Substituting the result
of �h into Eq. (19) and employing the boundary conditions
in Eq. (18) in the process of integrations, the primary flow
is determined:

�U X 3ð Þ ¼



RN exp
ð1þ RNÞX 3

Le

� �
:

þ exp
1þ RN

Le

� �
1� 1þ RNð ÞX 3½ �

þð1þ RNÞðX 3 � 1Þ
�

exp
1þ RN

Le

� �
� 1

� ��
;

�h X 3ð Þ ¼ 1� exp �ð1þ RNÞ 1� X 3ð Þ
Le

� �
 ��

1� exp � 1þ RN

Le

� �
:


 �
ð21Þ

The pressure distribution in the primary flow, �P , can then
be obtained by integrating the third expression in Eq.
(17) with respect to X3, with �h and �U given by Eq. (21).
For most nanofluids investigated so far [10], RN � 100–
10, Le � 105–106, and consequently e = (1+RN)/
Le � 10�5–10�4. Expanding �h and �U into the power series
of e and retaining up to the first-order terms,
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�UðX 3Þ ¼ 1� X 3 þ
RNX 3 X 3 � 1ð Þ

2

� �
eþ � � � ;

�h X 3ð Þ ¼ 1� X 3 þ
X 3 1� X 3ð Þ

2

� �
eþ � � �

ð22Þ

with e � 10�4, as compared to (1 � X3) � 100, the zeroth
order terms are dominant in both �h and �U. Consequently,
�hðX 3Þ ¼ �UðX 3Þ ffi 1� X 3, which display linear distributions
in X3. Nonlinear behaviors in Eq. (21) become pronounced
for Le � 10 and smaller. For the nanofluids being explored
so far, however, the value of Lewis number (Le) is about
three to four orders of magnitude larger. Even though
closed form solutions for �h and �U exist, therefore, the linear
approximations, i.e., �hðX 3Þ ¼ �UðX 3Þ ffi 1� X 3, are ade-
quate and will be used in this work.

2.2. Disturbance flow

Disturbances are now superimposed onto the primary
flow,

U i ¼ U 0i; P ¼ �P þ P 0; h ¼ �hþ h0; U ¼ �Uþ U0; ð23Þ

with �h ¼ �U ffi 1� X 3, and consequently d�h=dX 3 ¼
d�U=dX 3 ¼ �1, substitution of Eq. (23) into Eqs. (10)–
(15) yields

oU 01
ox1

þ oU 02
ox2

þ oU 03
ox3

¼ 0 ð24Þ

oU 01
os
¼ � oP 0

ox1

þ Prr2U 01;
oU 02
os
¼ � oP 0

ox2

þ Prr2U 02; ð25Þ

oU 03
os
¼ � oP 0

ox3

þ Prr2U 03 � RaPr /1 � 1ð Þh0

� /0 � /1ð ÞfH Rq � 1þ bðT 1 � T 0Þ
� �

U0

þ RaPr �hU0 þ �Uh0
	 


g; ð26Þ
oU0

os
� U 03 ¼ N BTr2U0 þ N TTr2h0; ð27Þ

oh0

os
� U 03 ¼ r2h0 � 1

Le
oh0

ox3

þ oU0

ox3

� �
� 2RN

Le

� �
oh0

ox3

: ð28Þ

In the linear theory of instability, all nonlinear terms in
Eqs. (24)–(28), such as u0i

ou0i
oxj

or h0U0, are neglected. In ab-
sence of nanoparticles, i.e., for regular fluids with
/1 = /0 = 0, DB = 0, DT = 0, d�U=dX 3 ¼ 0, and Le � 1/
DB ?1, NBT = NTT = 0 and the term �U 03 on the left
hand site of Eq. (27) vanishes due to d�U=dX 3 ¼ 0. Eq.
(27) thus becomes a zero identity, and Eqs. (24)–(26),
(28) are reduced to the momentum and energy equations
for free convection in regular fluids.

Eqs. (24)–(28) provide six equations to be solved for six
unknowns: three velocity disturbances (U 0i for i = 1, 2, and
3), pressure disturbance (P0), temperature disturbance (h0),
and volumetric-fraction disturbance of nanoparticles (U0).
To reduce the order of coupling among the six unknowns,
U 01 and U 02 are eliminated from Eqs. (25) and (26). This
results in the following equation for U 03 that are coupled
with U0 (Eq. (27)) and h0 (Eq. (28)):
o

os
r2U 03 ¼ Prr4U 03 � RaPr /1 � 1ð Þr2

1h
0

� /0 � /1ð ÞfH Rq � 1þ b T 1 � T 0ð Þ
� �

r2
1U
0

þ RaPr �hr2
1U
0 þ �Ur2

1h
0	 

g;

ð29Þ

where r4 � o4=ox4
1 þ o4=ox4

2 þ o4=ox4
3 þ 2o4=ox2

1ox2
2 þ 2o4=

ox2
2ox2

3 þ 2o
4=ox2

1ox2
3 is the three-dimensional biharmonic

operator, r2 � o
2=ox2

1 þ o
2=ox2

2 þ o
2=ox2

3 is the three-
dimensional Laplacian operator, and r2

1 � o
2=ox2

1þ
o

2=ox2
2 is the two-dimensional Laplacian operator on the

X1–X2 plane. Seeking for the convective cell patterns on
the X1–X2 plane, with their intensities varying in the
X3-direction:

U0ðX 1;X 2;X 3Þ
h0ðX 1;X 2;X 3Þ
U 03ðX 1;X 2;X 3Þ

8><
>:

9>=
>; ¼ ExpðrsÞf ðX 1;X 2Þ

F ðX 3Þ
HðX 3Þ
UðX 3Þ

8><
>:

9>=
>;;

ð30Þ

the in-plan cell pattern, f(X1,X2), is governed by

r2
1f þ a2f ¼ 0; or

o
2f

oX 2
1

þ o
2f

oX 2
2

þ a2f ¼ 0; ð31Þ

with a being the reciprocal of the side-length of the convec-
tive cell, which is an unknown to be determined from the
onset of instability. A close-form solution to Eq. (31) is
[22],

f ¼ cos
a

ffiffiffi
3
p

X 1þX 2

	 

2

" #
þ cos

a
ffiffiffi
3
p

X 1�X 2

	 

2

" #
þ cos aX 2ð Þ;

ð32Þ

which gives the hexagonal pattern in correspondence with
the Bènard cells for regular fluids. The amplification rate
of disturbances, r in Eq. (30), is complex in nature, i.e.,
r = rr + iri with i =

p�1. The onset of instability is dictated
by ri = 0, which separates the unstable regime (rr > 0) from
the stable regime (rr < 0). Since we are not interested in the
stable response represented by ri, under which the distur-
bances are sinusoidal and always stable, the onset of instabil-
ity is represented by r = 0, which is the same conditions used
in studying the Bénard instability for regular fluids. Setting
r = 0 and substituting Eq. (30) into Eqs. (27)–(29), the
equations governing the onset of instability are

F 00 � a2F þ RN H00 � a2H
	 


þ U
N BT

¼ 0; ð33Þ

H00 � 1þ 2RN

Le

� �
H0 � a2H� F 0

Le
¼ �U ; and ð34Þ

U 0000 � 2a2U 00 þ a4U þ a2Ra½ /1 � 1ð Þ
þ ð/0 � /1Þ�U�Hþ a2 /0 � /1ð Þ

� Ra
bðT 1 � T 0Þ

Rq � 1þ bðT 1 � T 0Þ
� �

þ Ra�h


 �
F ¼ 0;

ð35Þ
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with prime denoting differentiation with respect to X3. The
function U can be first eliminated from Eqs. (33) and (34):

F 00 � a2F þ RN H00 � a2H
	 


¼ 1

N BT

H00 � 1þ 2RN

Le

� �
H0 � a2H� F 0

Le

� �
: ð36Þ

Eq. (35) requires four boundary conditions for U, two at
X3 = 0 and two at X3 = 1. For a rigid surface thereby
[23], the non-slip condition and the continuity equation re-
sults in U 03 ¼ 0 and oU 03=oX 3 ¼ 0, or U = 0 and dU/dX3 = 0
according to Eq. (30). For a free surface where stress-free
conditions apply, vanishing of the shear stresses tangent
to the surface and continuity equation give U 03 ¼ 0 and
o2U 03=oX 2

3 ¼ 0, or U = 0 and d2U=dX 2
3 ¼ 0. A rigid (non-

slip) boundary at X3 = 0 and a free surface at X3 = 1 will
be considered to examine the effect of nanoparticle drifting.
With the boundary values of �h and �U absorbed in the pri-
mary flow, Eq. (18), the boundary conditions for h0 (H)
and U0 (F), and U 03 (U) in Eqs. (33)–(36) are thus,

F ¼ 0; H ¼ 0; U ¼ 0; U 0 ¼ 0 at X 3 ¼ 0;

F ¼ 0; H ¼ 0; U ¼ 0; U 00 ¼ 0 at X 3 ¼ 1:
ð37Þ

Eqs. (35)–(37) display an eigenvalue problem for Ra, which
is a function of a in correspondence with a specific size of
the convection cells. To characterize the onset of instabil-
ity, however, the smallest value of Ra, denoted by Rac

and termed critical Rayleigh number, is targeted among
all the possible values of a. Mathematically, this condition
is represented by d(Ra)/d(a) = 0 for Rac to exist at ac.

3. Eigenfunction expansions

A close form solution for the critical Rayleigh number
will be attempted by the method of eigenfunction expan-
sions in conjunction with the method of weighted residuals.
The method has been shown highly accurate, within 0.4%
as compared to the numerical solution by the use of only
the first fundamental mode in the eigenfunction expansions
for temperature.

3.1. Regular fluids

In absence of nanoparticles, small values for /0 and /1 are
taken in Eqs. (34) and (35) to recover the case for regular flu-
ids. Mathematically, /0 ? 0, /1 ? 0, and consequently
Le ?1 according to Eq. (16). Eqs. (34) and (35) reduce to

H00 � a2H ¼ �U ; Hð0Þ ¼ 0; Hð1Þ ¼ 0; ð38Þ
U 0000 � 2a2U 00 þ a4U � a2RaH ¼ 0;

Uð0Þ ¼ 0; U 0ð0Þ ¼ 0; Uð1Þ ¼ 0; U 00ð1Þ ¼ 0; ð39Þ
which are exactly the same governing equations for regular
fluids [22,23]. Reciprocal of the cell size (a) and Rayleigh
number (Ra) are the only parameters remained. Expanding
H in terms of sin(mpX3), which satisfy the boundary condi-
tions in Eq. (38) and are orthogonal in the physical domain
of X32 [0, 1],
HðX 3Þ ¼
X1
m¼1

Am sinðmpX 3Þ; ð40Þ

Eq. (39) can be solved for U(X3):

UðX 3Þ ¼
X1
m¼1

ae�aX 3 RaAm

2 e4a � 4ae2a � 1ð Þ a2 þ mpð Þ2
h i2

� f
r

ea ½
s

ðe2a � 1Þðe2aX 3 � 1ÞðmpÞ2ðX 3 � 1Þ

þ 2a3X 3ðe2a � e2aX 3Þ þ a2½�1þ ðX 3 � 1Þe2að1þX 3Þ

þ X 3 þ ð1þ 3X 3Þðe2a þ e2aX 3Þ� þ 2a½1� e2að1þX 3Þ

þ ð1þ m2p2X 3Þðe2a � e2aX 3Þ� �
s

sinðmpÞ

� 2a ½
t

mp ½
u

ðX 3 � 2Þ � ðe2að1þX 3Þ � e2aÞ

þ X 3ðe4a � e2aX 3Þ �
u

þeaX 3ð1þ 4ae2a � e4aÞ

� sinðmpX 3Þ �
t

g
r

: ð41Þ

Substituting Eq. (40) (for H) and Eq. (41) (for U) into Eq.
(38) to form the residual, weighing the residual to zero by
multiplying sin(npX3) on the residual, in turn, with
n = 1,2, . . . ,m, and integrating the results with respect to
X3 from 0 to 1, the results can be expressed in the following
form:

X1
m¼1

AmbmnðRa;aÞ ¼ 0; n ¼ 1;2; . . . ;m;

bmnðRa;aÞ ¼ f
r

�2m ½
s

2ðapÞ3nðe2a � 1Þ2ðm2 � n2ÞRa

þ ½
t

�2ðapÞ2eaðm2 � n2Þ � ½a2ðe2a � 1Þ

þ a3ðe2a þ 1Þ þ ðnpÞ2ðaþ ae2a � e2a þ 1Þ�Ra

þ ð1þ 4ae2a � e4aÞ � ½a2 þ ðnpÞ2�2½a6 þ 3ða2mpÞ2

þ ðmpÞ6 þ a2ð3m4p4 � RaÞ� cosðmpÞ �
t

sinðnpÞ �
s

� sinðmpÞ ½
u

�2nðe4a � 4ae2a � 1Þ½a2 þ ðmpÞ2�2

� ½
v

a6 þ a4ðm2 þ 2n2Þp2 þ ðmn2p3Þ2

þ a2½2ðmnp2Þ2 þ ðnpÞ4 � Ra� �
v

cosðnpÞ

� apRaðm2 � n2Þ � ½
w

�4anp� ea½ða2 �m2p2Þ

� ðe2a � 1Þ þ aðe2a þ 1Þða2 þm2p2Þ�
þ ½

x

4a6e2a � ðe2a � 1Þ2ðmnp2Þ2

þ a4f3þ 3e4a þ 2e2a½5þ 2p2ðm2 þ n2Þ�g
þ ðapÞ2 ½

y

ðe2a � 1Þ2n2

þm2f1þ e4a þ 2e2a � ½2ðnpÞ2 � 1�g �
y

�
x

� sinðnpÞ �
w

�
u

g
r

=f2pðe4a � 4ae2a � 1Þðm2 � n2Þ

� ½a2 þ ðmpÞ2�2½a2 þ ðnpÞ2�2g; ð42Þ
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where the paired brackets and braces are labeled for easier
identifications. For nontrivial solutions of Am at a prescribed
value of m approximating H according to Eq. (40), the deter-
minant of the coefficients must vanish, i.e., jbmnj = 0, which
gives the relation between Ra (Rayleigh number) and a (cell
size) as the mth order solution. With m = 1 and n = 1 in Eq.
(42), the first-order solution can be obtained,
;

b11 ¼ �fpða2 þ p2Þ2ðe4a � 4ae2a � 1Þ½a6 þ 3ða2pÞ2 þ p6 þ a2ð3p4 � RaÞ� þ 4Ra

� ðapÞ3ðe2a � 1Þ2g=½2pða2 þ p2Þ4ðe4a � 4ae2a � 1Þ� ¼ 0; or

Ra ¼ 1þ 4ae2a � e4að Þ a2 þ p2ð Þ5

a2f½4a3e2a � a2ðe4a � 1Þ�ða2 þ 2p2Þ � p4ðe4a � 1Þ þ 4ap2½1þ e4a þ e2aðp2 � 2Þ�g :

ð43Þ
The critical cell size at the onset of instability is then deter-
mined from the condition

dRa
da

� �
a¼ac

¼ 0; which gives � 32a8e4a

þ 8a5e2að2a2 þ 5p2Þðe4a � 1Þ � 3a4ðe2a

� 1Þ2ðe4a þ 26e2a þ 1Þp2 þ ðe4a � 1Þ2p6

þ 8a2e2ap4½1þ e4a þ 2e2aðp2 � 1Þ�
þ 2a3p2ðe4a � 1Þ½7þ 7e4a þ 2e2að�7þ 4p2Þ�
� 2ap4ðe4a � 1Þ½3þ 3e4a þ e2að�6þ 4p2Þ�
� 2a6½1þ e8a þ e4að�2þ 24p2Þ�
¼ 0 at a ¼ ac ) ac ffi 2:6824; ð44Þ

which is exactly the same as the well-known result (2.682)
obtained under the same boundary conditions [23]. Substi-
tuting the value of ac into Eq. (43), Rac ffi 1112.7 is re-
sulted, which is about 1% higher than the full (numerical)
solution of 1100.65. High accuracy of the present approach
is thus evident, by considering only the fundamental mode
of m = n = 1. Should the second-order harmonics be at-
tempted, m = n = 2, the same procedure results in
Rac ffi 1101.36 (fundamental mode) and 21205.3 (second
harmonics). The difference of the critical Rayleigh number
from the full solution is rapidly reduced to 6.45 � 10�4.
The combined use of the eigenfunction expansion and
weighted residual methods in Eqs. (40)–(42), in essence, is
Trefftz’s variational boundary method [24]. With all the
boundary conditions satisfied in the eigenfunction expan-
sions, the method is capable of capturing the fundamental
eigenvalue (critical Rayleigh number) very accurately, usu-
ally by considering only the first eigenmode.
3.2. Nanofluids

In presence of Brownian motion and thermophoretic
diffusion of nanoparticles in the fluid, the eigenfunction
expansion for temperature, Eq. (40), remains the same.
The modal response for the volume fraction of the nano-
particles, F(X3), results from solving Eq. (36) subject to
the boundary conditions in Eq. (37). The result is
F ðX 3Þ ¼
X1
m¼1

½f1m cosðmpÞ þ f2m sinðmpÞ þ f3m sinðmpX 3Þ

þ f4m cosðmpX 3Þ þ f5m�;
where

f1m¼�4 gX 3
1 �1

	 

exp 1�X 3ð Þ 1

2LeN BT

þ ffiffiffiffiffi
g1

p
� �� �

�Le3N 2
BTmp a2þm2p2

	 

� 1þN BT 1þRNð Þ½ �= g2 g1�1ð Þ½ �

f2m¼�4 gX 3
1 �1

	 

exp 1�X 3ð Þ 1

2LeN BT

þ ffiffiffiffiffi
g1

p
� �� �

LeN BTð Þ2

� Le2N BT a2þm2p2
	 
2

h
�½LeN BTða2þm2p2Þ�2RN

�m2p2ð1þ2RNÞ
�
= g2 g1�1ð Þ½ �;

f3m¼f Le a2þm2p2
	 
� �2

NBT� LeN BT a2þm2p2
	 
� �2

RN

� mpð Þ2 1þ2RNð Þg=f mpð Þ2þ LeN BT a2þm2p2
	 
� �2g;

f4m¼
Le a2þm2p2ð Þmp� 1þNBT 1þRNð Þ½ �

mpð Þ2þ LeN BT a2þm2p2ð Þ½ �2
;

f5m¼ 4 gX 3
1 �g1

	 

exp �X 3

1

2LeN BT

þ ffiffiffiffiffi
g1

p
� �� �

�Le3N 2
BTmp a2þm2p2

	 

1þNBT 1þRNð Þ½ �= g2 g1�1ð Þ½ �

ð45Þ

with

g1 ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2aLeN BTÞ2

q
LeN BT

2
4

3
5;

g2 ¼ 1þ 2Le2 a2 þ m2p2
	 


N 2
BT

� �2 � 2aLeN BTð Þ2 � 1:

Eq. (45) needs to be simplified to obtain a close form solu-
tion for the critical Rayleigh number. Noting that Le is of
the order of 105 and (LeNBT) is of the order of 105–106 [10],
the long expression in Eq. (45) can be first expanded in
terms of 1/Le and then the result in terms of 1/(LeNBT)
to yield

F ðX 3Þ ¼ RN�
1

NBT

� �
e�aX 3

e2a� 1

� �X1
m¼1

Am ea e2aX 3 � 1
	 
�

� sin mpð Þ � eaX 3 e2a � 1
	 


sin mpX 3ð Þ
�
þO

1

LeN BT

� �
:

ð46Þ
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Eq. (40) (for H(X3)) and Eq. (46) (for F(X3)) can now be
substituted into Eqs. (35) and (37) to solve for U(X3). With
H(X3), F(X3), and U(X3) thus obtained, Eq. (34) is used to
derive the residual. Following the same procedure for the
case of regular fluids, multiplying the residual, in turn, by
sin(npX3) with n= 1,2, . . .,m, and integrating the result
with respect to X3 from 0 to 1, a similar expression to
Eq. (42) can be obtained. The general expressions in this
case, even with a greatly simplified expression for F(X3),
become much more involved due to the tangling behaviors
of Brownian motion and thermophoresis of nanoparticles.
4. First-order approximation

The first-order approximation with m = 1 in Eq. (40),
evidenced by the case of regular fluids in Eq. (43), is
expected to yield a close approximation to the critical Ray-
leigh number for the case of nanofluids. With
H = A1sin[pX3], F(X3) in Eq. (46) becomes

F ðX 3Þ ¼ A1

1

NBT

� RN

� �
sin½pX 3�; and consequently;

F 0ðX 3Þ ffi A1

1

N BT

� RN

� �
p cos½pX 3�:

ð47Þ

With (LeNBT) � 105, accuracy of Eq. (47) is on the order of
10�5. With practical properties of nanofluids, Eq. (47) will
be shown indistinguishable from the general solution in the
numerical examples. The residual of Eq. (34) can now be
calculated by integrating Eq. (35) for U(X3), with the
boundary conditions in Eq. (37). Weighing the residual
by sin[pX3] in integrating the result from 0 to 1, diminution
of the coefficient of A1, b11 = 0 in correspondence with Eq.
(43) results in

Ra ¼ 2ða2 þ p2Þ6ðe4a � 4ae2a � 1ÞN BTb T 0 � T 1ð Þ
= f

r

a2 /0 � /1ð Þ ½
s

�2ða2 þ p2Þ

� f4a3e2aða2 þ 2p2Þ � ðe4a � 1Þða2 þ p2Þ2

þ 4ap2½1þ e4a þ e2að�2þ p2Þ�g
þ b T 0 � T 1ð Þ ½

t

�4a5e2aða2 þ 3p2Þ þ a4ðe4a � 1Þ

� ða2 þ 3p2Þ þ 3ðapÞ2ðe2a � 1Þ � ½�8� 16ea

þ p2 þ e2að�8þ p2Þ� � 4p4aea½4þ 4e2a þ eað8þ p2Þ�
þ ðe2a � 1Þp4 � ½8þ 16ea þ p2 þ e2að8þ p2Þ�
� 4a3p2ea½4þ 4e2a þ eað8þ 3p2Þ� þ NBT

� ½
u

4a7e2a � a6ðe4a � 1Þ þ 12p2a5e2a � 3ða2pÞ2ðe4a � 1Þ

þ 4ap4½2� 4ea � 4e3a þ 2e4a þ e2aðp2 � 12Þ�
� p4ðe2a � 1Þ½�8� 16ea þ p2 þ e2aðp2 � 8Þ�
þ 4a3p2½2� 4ea � 4e3a þ 2e4a þ 3e2aðp2 � 4Þ�
� 3ðapÞ2ðe2a � 1Þ½8þ 16ea þ p2 þ e2að8þ p2Þ�
þ ½
v

4a7e2a � a6ðe4a � 1Þ þ 12a5p2e2a � 3ða2pÞ2ðe4a � 1Þ

� 3ðapÞ2ðe2a � 1Þ � ½�8� 16ea þ p2 þ e2aðp2 � 8Þ�
þ 4ap4ea½4þ 4e2a þ eaðp2 þ 8Þ� � ðe2a � 1Þp4

� ½8þ 16ea þ p2 þ e2að8þ p2Þ� þ 4a3p2ea

� ½4þ 4e2a þ eað3p2 þ 8Þ� �
v

RN �
u

�
t

�2ða2 þ p2Þ

� ½NBTRNðRq � 1Þ þ Rq�f4a3e2aða2 þ 2p2Þ
� ða2 þ p2Þ2ðe4a � 1Þ þ 4ap2 � ½1þ e4a þ e2aðp2 � 2Þ�g �

s

þ 2ða2 þ p2Þf4a3e2aða2 þ 2p2Þ � ða2 þ p2Þ2ðe4a � 1Þ
þ 4ap2½1þ e4a þ e2aðp2 � 2Þ�g
� NBTb T 0 � T 1ð Þð�1þ /1Þ g

r

ð48Þ

The last term containing (�1 + /1) has been singled out
intentionally. To preserve the novelty observed in nanofl-
uids, the value of /1 needs to be less than a few percent
[1]. With /1 on the order of 10�2, the factor (�1 + /1) in
the denominator of Eq. (48) can be replaced by �1 without
causing too much error. The Rayleigh number, with the
term containing /1 ignored, is a function of the cell-size
parameter (a), the temperature difference (T1 � T0), the
volume-fraction difference of nanoparticles (/0 � /1), the
thermal expansion coefficient (b) of the nanofluids, the den-
sity ratio (Rq), and the two nondimensional parameters
NBT and RN. Note that the Rayleigh number is no longer
a function of Lewis number (Le), which was dropped in
the first-order approximation for F(X3), Eq. (47).

The Rayleigh number given by Eq. (48) reduces to that
in Eq. (43) for regular fluid. In the limit of D/
= (/0 � /1) ? 0, including the case of /0 = 0 and /1 = 0
(no nanoparticle), effects of thermophoresis and Brownian
motion of nanoparticles disappear and the Rayleigh num-
ber for regular fluids is perfectly recovered. The quantities
grouped within bracket no. 2 in Eq. (48), therefore, reflect
the combined effects of thermophoresis and Brownian
motion of nanoparticles in presence of a concentration
gradient.

The limit of D/ ? 0 plays an important role in deter-
mining the critical dimension of the convective cells (ac).
Since the volume fractions of nanoparticles, both /0 and
/1, are usually less than a few percent [1–5] to preserve
the novel behavior of nanofluids, the difference between
/0 and /1 is indeed very small in practice. As far as
the value of ac is concerned, therefore, its value should
be very close to that determined from the limit of D/
= /0 � /1 approaching zero. The Rayleigh number given
by Eq. (48) reduces to that in Eq. (43) in the limit of D/
? 0. The critical condition of d(Ra)/da = 0 at a = ac

from Eq. (48), in the limit of D/ ? 0, consequently, is
identical to Eq. (44). The resulting ac ffi 2.6824 is
expected to hold for nanofluids as well, with /0 and /1

being less than a few percent. With a replaced by
2.6824 in Eq. (48),
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Rac ¼ �2100:05NBTb T 0 � T 1ð Þ= f
r

½1:887ðRq � 1Þ

� b T 0 � T 1ð Þ� /0 � /1ð Þ þ NBTf�1:887RNðRq � 1Þ
� /0 � /1ð Þ þ b T 0 � T 1ð Þ½ 0:887þ RNð Þ
� /0 � /1ð Þ � 1:887�g g

r

; ð49Þ

while the value of ac is independent of the properties of nano-
fluids, which will be proven in the numerical examples below
based on the general result shown by Eq. (48), the value of
Rac depends on b(T0 � T1), (/0 � /1), NBT, Rq, and RN.

4.1. Other boundary conditions

Eqs. (48) and (49) were derived for nanofluids between a
rigid (non-slip) and a free surface, U = 0 and U0 = 0 at
X3 = 0 and U = 0 and U00 = 0 at X3 = 1, as described in
Eq. (37). This condition simulates the thin-film region
between a bubble and a hot surface as illustrated at the bot-
tom in Fig. 1. Other possible combinations are rigid bound-
ing surfaces, upper left in Fig. 1, where the non-slip
conditions apply, U = 0 and U0 = 0 at both X3 = 0 and 1,
and free–free surfaces, upper right in Fig. 1, where the
stress-free condition (U = 0 and U00 = 0) applies at both
X3 = 0 and 1.

Replacing the boundary conditions in Eq. (37) accord-
ingly, the critical Rayleigh number under the various sur-
face conditions can be determined in exactly the same
way. The first-order (m = 1) solutions are

Rigid–rigid surfaces: ac ffi 3.11421 and

Rac ¼ �3430:16NBTb T 0 � T 1ð Þ= f
r

½2ðRq � 1Þ

� b T 0 � T 1ð Þ� /0 � /1ð Þ þ NBTf�2RNðRq � 1Þ
� /0 � /1ð Þ þ b T 0 � T 1ð Þ½RN /0 � /1ð Þ � 2�g g

r

:

ð50Þ

Free–free surfaces: ac ffi 2.22144 and

Rac ¼ �27p4NBTb T 0 � T 1ð Þ= f
r

2 ½
s

½2ðRq � 1Þ

� b T 0 � T 1ð Þ� /0 � /1ð Þ þN BTf�2RNðRq � 1Þ
� /0 �/1ð Þ þ b T 0 � T 1ð Þ½ 1þ RNð Þ /0 � /1ð Þ � 2�g �

s

g
r

ð51Þ
U = 0, U ′ = 0 (rigid)

U = 0, U″ = 0 (free)

U = 0, U″ = 0 (free)

U = 0, U″ = 0 (free)

U = 0, U ′ = 0 (rigid)

U = 0, U ′ = 0 (rigid)

Fig. 1. The various surfaces bounding the nanofluids.
The present case with a rigid (at X3 = 0) and a free (X3 = 1)
surface is the most complicated among the three, and hence
having the longest expression for the Rayleigh number, due
to the non-symmetrical boundary conditions at X3 = 0 and
1. Under the same conditions, the critical Rayleigh number
is the highest (lowest), and hence most stable (unstable), for
the case of rigid–rigid (free–free) surfaces. The case of ri-
gid-free surfaces is between the two.

The critical Rayleigh number shown in Eqs. (49)–(51)
depends on density (through Rq and DT), heat capacity
(through a in NBT), thermal conductivity (through a in
NBT and k in DT), and viscosity (through DT and DB) of
the nanofluid. Because they are also involved in the coeffi-
cients of Eqs. (10)–(15), heat transfer coefficient (Nusselt
number) derived from integrating Eqs. (10)–(15) will also
depend on these properties.

5. Results and discussion

Validity of Eq. (47) is a key to obtain the close form
solution of the Rayleigh number. For the fundamental
mode with m = 1, based on which the close form solutions
are derived in Eqs. (48) and (49), Fig. 2 compares the full
expression of F(z) shown by Eq. (45) and the approximate
solution shown by Eq. (47). For NBT = 0.2, a typical value
for alumina/water nanofluids as shown in Fig. 2(a), the full
Fig. 2. Comparisons of the fundamental mode (m = 1) for F(z): Full
expression shown by Eq. (45) and approximate expression shown by Eq.
(47).



Fig. 3. Water-based nanofluids with alumina and copper nanoparticles
with DT = 10 K and D/ = 1 vol%. Al2O3: b = 6 � 10�3, Le = 8 � 105,
NBT = 0.2, Rq = 4, RN = 30.18; Cu: b = 6 � 10�4, Le = 7 � 105, NBT = 2,
Rq = 9, RN = 3.018. Critical Rayleigh number occurs at ac = 2.6824.
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expression becomes indistinguishable from the approxi-
mate solution as the value of Le increases beyond
8 � 101. For Le ffi 8 � 105 in alumina/water nanofluids,
which is four orders of magnitude greater, the approximate
expression becomes exact. The same behavior is observed
for copper/water nanofluids with NBT = 2, Fig. 2(b). No
sensible difference between the full and approximate
expressions can be observed beyond Le � 8 � 100, as com-
pared to Le ffi 7 � 105 for copper/water nanofluids. Eq.
(47), therefore, is indeed a very close approximation to
the full solution shown by Eq. (45).

Fig. 3 compares the stability curves for water based
nanofluids with alumina and copper nanoparticles. Ther-
mofluid properties are calculated based on 10 nm nanopar-
ticles, which are summarized in the figure caption. In spite
of the uncertainty in the extended use of NT in Eq. (5) for
nanoparticles, the value of RN should be of the order of
100–102 for nanoparticles in the range of 1–100 nm. The
value of RN for copper is reduced by one order of magni-
tude from that for alumina because thermal conductivity
of copper is about one order of magnitude higher than that
of alumina. Eq. (48) is used in producing Fig. 3.

The critical value of Rayleigh number (Rac) occurs at
ac = 2.6824 in both cases, as proven analytically above,
regardless of the different thermophysical properties in dif-
ferent nanofluids. The value of Rac is lowered by two orders
of magnitude, 82.7172 for the alumina/water nanofluid and
lim
NBT!1

Ra ¼ � 2 a2 þ p2ð Þ3b T 0 � T 1ð Þ
a2½�2RNðRq � 1Þ /0 � /1ð Þ þ b T 0 � T 1ð Þ½ 1þ RNð Þ
32.2006 for the copper/water nanofluid, as compared to
Rac ffi 1112.7 for the regular fluid without nanoparticle. In
terms of the higher value of Rac at the onset of instability,
alumina/water nanofluid is more stable than the copper/
water nanofluid.

The close form solution of the Rayleigh number
obtained in Eq. (48) makes it convenient to illustrate the
various effects involved. Threshold values for water nano-
fluids with metallic/metallic oxide nanoparticles of 1–
100 nm are used in the numerical examples: RN = 30.18,
NBT = 0.2, Le = 8 � 105, and b = 5.32 � 10�4. The value
of Rq = 6 is taken from the mean between 4 (aluminum
nanoparticles) and 9 (copper nanoparticles). The values
of DT and D/ are taken as 80 K and 1 vol%, respectively,
unless stated otherwise. Fig. 4 shows that the critical Ray-
leigh number decreases as (a) the temperature difference
DT = T0 � T1 decreases, (b) the volume-fraction difference
of nanoparticles, D/ = /0 � /1, increases, (c) the density
ratio Rq increases, (d) the ratio RN increases, and (e) the
value of NBT increases. In terms of the lower value of the
critical Rayleigh number, these are the destabilizing effects
for natural convection in nanofluids. The critical value of
Rayleigh number (Rac) remains to occur at ac = 2.6824 in
all cases and, depending on the thermophysical properties
of the nanofluids, the critical Rayleigh number can be low-
ered than that of the regular fluid by two orders of magni-
tude. A larger temperature difference (DT) produces a
larger buoyancy force, which effectively suppresses the tem-
poral growth of the disturbances and consequently results
in a more stable behavior as shown in Fig. 4(a). Brownian
motion of the nanoparticles is promoted as the difference of
the volume fraction of nanoparticles (D/) increases. This is
a destabilizing effect, as shown by Fig. 4(b), in terms of a
much lower value of Rac now only of the order of 100–
101. With other conditions remained the same, effect of
Rq shown by Fig. 4(c), heavier nanoparticles moving
through the base fluid produce stronger disturbances. It
thus facilitates development of turbulence, resulting in a
lower critical Rayleigh number at a larger value of Rq.
Fig. 4(d) shows that the critical value of Rac decreases as
the ratio of RN increases. While both thermophoresis and
Brownian motion are driving forces in support of the
motion of nanoparticles, thermophoresis at a higher value
of thermophoretic diffusivity is more favorable to the initi-
ation of turbulence in nanofluids. Though not as strong as
thermophoresis, Brownian motion also promotes turbu-
lence in nanofluids, as shown in Fig. 4(e). The critical Ray-
leigh number is smaller for nanofluids with a larger value of
the Brownian diffusion coefficient. Note that the case of
NBT = 2 shown in Fig. 4(e) has already approached the
lower bound of NBT ?1. From Eq. (48),
/0 � /1ð Þ � 2� ; ð52Þ



Fig. 4. Effects of (a) DT = T0 � T1, (b) D/ = /0 � /1, (c) Rq, (d) RN, and (e) NBT on the Rayleigh number (Ra): ac = 2.6824 in all cases.
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with the same parameters used in Fig. 4, Rac ffi 30.6604 as
NBT ?1, which is the value of Rac at ac = 2.6824 shown
in Fig. 4(e).

The critical Rayleigh number (Rac) for the case of
DT = 80 K in Fig. 4(a) is 36.5496, resulting from the use
of m = 1 in Eqs. (40) and (46), which is the base for com-
parison as other parameters are varied in Fig. 4. The corre-
sponding values of Rac for m = 2 and 3, respectively, are
36.1804 and 36.1599, showing an accuracy of about 1%
captured by the first-order (m = 1) solution. The second
and third harmonics are Rac ffi 685.382 for m = 2 and
Rac ffi 5550.12 for m = 3. The combined use of the eigen-
function expansion method and the weighted residual
method in this work does provide a highly accurate
approach as far as the critical Rayleigh number (eigen-
values) is concerned.
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In correspondence with ac ffi 2.6824 and Rac ffi 36.5496
for rigid-free surfaces, under the same conditions, the
critical conditions for the case of rigid–rigid surfaces
are ac ffi 3.11421 and Rac ffi 56.3136 (Eq. (50)) and those
for the case of free–free surfaces are ac ffi 2.22144 and
Rac ffi 21.5925 (Eq. (51)). Comparing to the correspond-
ing cases for regular fluids [23], ac ffi 3.117 and Rac ffi
1707.762 (rigid–rigid) and ac ffi 2.2214 and Rac ffi 657.511
(free–free), the length parameter at the onset of instabil-
ity (ac) stays the same while the critical Rayleigh number
is again lowered by one order of magnitude due to the
combined behavior of Brownian motion and thermopho-
resis of nanoparticles. Highly promoted turbulence in
nanofluid enhances the overall heat transfer coefficient,
which is a key to understand the nearly uniform temper-
ature across the vaporization/condensation sections in
oscillating heat pipes subjected to high heat-flux [25].

The present work focuses on the critical point separating
the laminar and the turbulent regimes. Determination of
the Nusselt number is the most important task to follow,
after the onset of instability is determined from the critical
Rayleigh number (Rac) derived in Eqs. (49)–(51). Different
sets of mass, momentum, and energy equations need to be
integrated in different regimes of the Rayleigh number;
namely in the laminar regime for Ra < Rac or in the turbu-
lent regime for Ra > Rac, which will be a major task by
itself. In the simplest case for a nanofluid passing over a
hot surface, in addition to the classical Reynold’s and Pra-
ndtl numbers, six dominant parameters have shown in the
expression for the Nusselt number. All details will be
reported in our future communication [26].

6. Conclusion

Instability of natural convection for nanofluids between
two plates, heated from below, is studied in this work. The
combined behavior of Brownian motion and thermophore-
sis of nanoparticles is shown to provide a strong destabiliz-
ing effect, which reduces the critical Rayleigh number by as
much as two orders of magnitude as compared to that of
the regular fluids without nanoparticles. The much lower
critical Rayleigh number suggests that turbulence may be
the dominating mode for natural convection in most nano-
fluids. The critical Rayleigh number depends on the differ-
ences of temperature (T0 � T1) and volume concentration
(/0 � /1) between the two plates, as well as the thermal
expansion coefficient of the nanofluids (b), the density ratio
of the nanoparticle to the base fluid (Rq), the Brownian-to-
thermal-diffusivity ratio (NBT), and the Brownian-motion-
to-thermophoretic diffusivity ratio (RN). Lewis number
(Le) does appear in natural convection, but it is a high-
order effect as compared to others at the onset of instabil-
ity. The critical Rayleigh number is not a function of Le.

Close form solutions for the Rayleigh number have
been established to resolve the nanoparticle effect. For
nanofluids between two free surfaces, Brownian motion
and thermophoresis of nanoparticles do not change the
geometrical configuration of the convective cell. At the
onset of instability for nanofluid bounded by a rigid
and a free surface, the critical value of ac stays approxi-
mately at 2.6824, which is independent of the nanofluid
properties. In general, the presence of nanoparticles does
not affect the critical cell size at the onset of instability,
regardless of the surface conditions involved. As com-
pared to the rigid–rigid (Rac ffi 56.3136 at ac ffi 3.11421)
and free–free (Rac ffi 21.5925 at ac ffi 2.22144) surface con-
ditions, the critical Rayleigh number for the case of rigid-
free surfaces (Rac ffi 36.5496 at ac ffi 2.6824) is between the
two. The constraints imposed on the growth of distur-
bances are not as strong as those in the case of rigid–rigid
surfaces, but are weaker than those in the case of free–free
surfaces. The analysis has been conducted by assuming
constant thermal properties of nanofluids. Drastic reduc-
tions of the critical Rayleigh number, consequently,
should be viewed qualitative for the time being. The prop-
erty enhancements by nanoparticles have been challenged
by recent studies, but it remains to be worthwhile to
instate the volume-fraction dependent thermal properties
in the analysis and reexamine the drastic reductions of
Rac obtained in this work. Close form solutions, however,
will not be possible in this extension due to the stiff non-
linearity of the problem.

Heat transfer enhancement by nanoparticles can be
more than an increase of the effective thermal conductivity
alone. Dominance of turbulence shown in this work, in
terms of the much lower critical Rayleigh number by one
to two orders of magnitude, should be explanatory for
the superior performance of oscillating heat pipes employ-
ing nanofluids.
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